Alvyanto METABOLISME Part 2 1


Metabolisme Lemak (Lipid/ Fat Metabolism)

MACAM LEMAK
ABSORPSI LEMAK

  • Lemak diet diserap dalam bentuk: kilomikron → diabsorpsi usus halus masuk ke limfe (ductus torasikus) → masuk darah
  • Kilomikron dalam plasma disimpan dalam jaringan lemak (adiposa) dan hati
  • Proses penyimpananya: kilomikron dipecah oleh enzim lipoprotein lipase (dalam membran sel) → asam lemak dan gliserol
  • Didalam sel asam lemak disintesis kembali jadi trigliserida (simpanan lemak)
MACAM LEMAK PLASMA

  • Asam lemak bebas (FFA= free fatty acid) → ada dalam plasma darah dan terikat dengan albumin
  • Kolesterol, trigliserida dan fosfolipid → dalam plasma berbentuk lipoprotein
  1. Kilomikron
  2. VLDL: very low density lipoprotein
  3. IDL: intermediate density lipoprotein
  4. LDL: low density lipoprotein
  5. HDL: high density lipoprotein
ASAM LEMAK BEBAS

  • Bila lemak sel akan digunakan untuk energi → simpanan lemak (trigliserida) dihidrolisis menjadi asam lemak dan gliserol (oleh enzim lipase sel)
  • Asam lemak berdiffusi masuk aliran darah sebagai asam lemak bebas (Free Fatty Acid) dan berikatan dengan albumin plasma
PENGGUNAAN FFA SEBAGAI ENERGI

  • FFA dalam plasma dibawa ke mitokondria dengan carrier Karnitin
  • FFA dalam sel dipecah menjadi asetil koenzim-A dengan beta oksidasi
  • Asetil koenzim-A hasil beta oksidasi → masuk siklus Krebs untuk diubah menjadi H dan CO2
METABOLISME LEMAK

Ada 3 fase:
  1. β oksidasi
  2. Siklus Kreb
  3. Fosforilasi Oksidatif
BETA OKSIDASI

  • Proses pemutusan/perubahan asam lemak → asetil co-A
  • Asetil co-A terdiri 2 atom C → sehingga jumlah asetil co-A yang dihasilkan = jumlah atom C dalam rantai carbon asam lemak : 2
  • Misal: asam palmitat (C15H31COOH) → β oksidasi → ?? asetil co-A
SIKLUS KREBS

  • Proses perubahan asetil ko-A → H + CO2
  • Proses ini terjadi didalam mitokondria
  • Pengambilan asetil co-A di sitoplasma dilakukan oleh: oxalo asetat → proses pengambilan ini terus berlangsung sampai asetil co-A di sitoplasma habis
  • Oksaloasetat berasal dari asam piruvat
  • Jika asupan nutrisi kekurangan KH → kurang as. Piruvat → kurang oxaloasetat
KETOSIS

  • Degradasi asam lemak → Asetil KoA terjadi di Hati, tetapi hati hanya mengunakan sedikit asetil KoA → akibatnya sisa asetil KoA berkondensasi membentuk Asam Asetoasetat
  • Asam asetoasetat merupakan senyawa labil yang mudah pecah menjadi: Asam β hidroksibutirat dan Aseton.
  • Ketiga senyawa diatas (asam asetoasetat, asam β hidroksibutirat dan aseton) disebut BADAN KETON.
  • Adanya badan keton dalam sirkulasi darah disebut: ketosis
  • Ketosis terjadi saat tubuh kekurangan karbohidrat dalam asupan makannya → kekurangan oksaloasetat
  • Jika Oksaloasetat menurun → maka terjadi penumpukan Asetil KoA didalam aliran darah → jadi badan keton → keadaan ini disebut KETOSIS.
  • Badan keton merupakan racun bagi otak → mengakibatkan Coma, karena sering terjadi pada penderita DM → disebut Koma Diabetikum
  • Ketosis terjadi pada keadaan :
  • Kelaparan
  • Diabetes Melitus
  • Diet tinggi lemak, rendah karbohidrat
RANTAI RESPIRASI

  • H adalah hasil utama dari siklus Krebs ditangkap oleh carrier NAD menjadi NADH
  • H dari NADH ditransfer ke → Flavoprotein → Quinon → sitokrom b → sitokrom c →sitokrom aa3 → terus direaksikan dengan O2 → H2O + Energi
  • Rangkaian transfer H dari satu carrier ke carrier lainya disebut Rantai respirasi
  • Rantai Respirasi terjadi didalam mitokondria → transfer atom H antar carrier memakai enzim Dehidrogenase → sedangkan reaksi H + O2 memakai enzim Oksidase
Urutan carrier dalam rantai respirasi adalah: NAD → Flavoprotein → Quinon → sitokrom b → sitokrom c → sitokrom aa3 → direaksikan dengan O2 → H2O + Energi

FOSFORILASI OKSIDATIF

  • Dalam proses rantai respirasi dihasilkan energi yang tinggi → energi tsb ditangkap oleh ADP untuk menambah satu gugus fosfat menjadi ATP
  • Fosforilasi oksidatif adalah proses pengikatan fosfor menjadi ikatan berenergi tinggi dalam proses rantai respirasi
  • Fosforilasi oksidatif → proses merubah ADP → ATP (dengan menngunakan energi hasil reaksi H2 + O2 → H2O + E)
SINTESIS TRIGLISERIDA DARI KARBOHIDRAT

  • Bila KH dalam asupan lebih banyak dari yang dibutuhkan → KH diubah jadi glikogen dan kelebihanya diubah jadi trigliserida → disimpan dalam jaringan adiposa
  • Tempat sintesis di hati, kemudian ditransport oleh lipoprotein ke jaringan disimpan di jaringan adiposa sampai siap digunakan tubuh
SINTESIS TRIGLISERIDA DARI PROTEIN

  • Banyak asam amino dapat diubah menjadi asetil koenzim-A
  • Dari asetil koenzim-A dapat diubah menjadi trigliserida
  • Jadi saat asupan protein berlebih, kelebihan asam amino disimpan dalam bentuk lemak di jaringan adipose
PENGATURAN HORMON ATAS PENGGUNAAN LEMAK

  • Penggunaan lemak tubuh terjadi pada saat kita gerak badan berat
  • Gerak badan berat menyebabkan pelepasan epineprin dan nor epineprin
  • Kedua hormon diatas mengaktifkan lipase trigliserida yang sensitif hormon → pemecahan trigliserida → asam lemak
  • Asam lemak bebas (FFA) dilepas ke darah dan siap untuk dirubah jadi energi
ARTERIOSKLEROSIS

  • Jika kadar kolesterol tinggi dalam darah → endapan lipid yang disebut: plak ateroma/ endapan kolesterol
  • Pada stadium penyakit fibroblast menginfiltrasi ateroma → sklerosis
  • Ca juga mengendap bersama → plak kalsifikasi
  • Kedua proses diatas menyebabkan arteri menjadi sangat keras → arteriosklerosis
  • Arteriosklerosis → menyebabkan vaskuler mudah pecah
  • Dinding vaskuler arteriosklerosis kasar → menyebabkan tombus dan emboli
  • Efek samping: darah tinggi, PJK, trombus → stroke emboli

Sintesis Protein
Sintesis protein adalah proses pencetakan protein dalam sel. Sifat enzim (protein) sebagai pengendali dan penumbuh karakter makhluk hidup ditentukan oleh jumlah jenis, dan urutan asam amino yang menyusunnya. Jenis dan urutan asam amino ditentukan oleh ADN (Asam Dioksiribose Nukleat). Sintesis protein meliputi dua langkah, yaitu transkripsi dan translasi.

 DNA adalah rantai doble heliks berpilin yang terdiri atas polinukleotida. Berfungsi sebagi pewaris sifat dan sintesis protein. Struktur DNA (deoxyribosenucleic acid) yaitu:
1. gula 5 karbon (deoksiribosa)
2. gugus fosfat
3. basa nitrogen.

Bentuk DNA adalah rantai double heliks berpilin ke kanan. Dalam DNA terdapat struktur-struktur di atas. Namun, jika diambil 1 lempeng yang mengandung ikatan fosfat, gula dan basa nitrogen, maka lempeng tersebut disebut nukleotida. Jika plat itu hanya basa nitrogen dan gula saja maka disebut nukleosida. Maka, DNA adalah polimer dari nukleotida.
Gula deoksiribosa pada DNA merupakan gula lima karbon yang kehilangan 1 atom oksigen. Gula deoksiribosa memegang basa nitrogen pada atom karbon nomor 1, sedangkan atom C nomor 5 berikatan dengan gugus fosfat. Gugus fosfat ini saling berikatan dengan gugus fosfat lainnya membentuk ikatan fosfodiester. Karena DNA merupakan rantai ganda dan atom-atom karbon mempunyai aturan diatas untuk mengikat basa nitrogen dan gugus fosfat maka satu rantai DNA terlihat berdiri tegak sedangkan rantai pasangannya justru terbalik. Maka pada notasi penulisan kode genetik DNA, ditulis 5’-kode genetik-3’, sedangkan untuk rantai pasangannya justru ditulis 3’-kode genetik-5’. Pengaturan ini disebut konfigurasi antiparalel.

Ada 2 kelompok basa nitrogen yang berikatan pada DNA yaitu
·Purin, terdiri dari basa nitrogen adenine dan guanin.
·Pirimidin, terdiri dari basa nitrogen sitosin dan timin
.Pada RNA, timin diganti dengan urasil.

Basa Purin selalu berpasangan dengan basa pirimidin melalui ikatan hidrogen. Adenine selalu berpasangan dengan hymine melalui 2 ikatan hidrogen sedangkan cytosine berpasangan dengan guanine melalui 3 ikatan hidrogen.
REPLIKASI DNA
Replikasi DNA berarti penggandaan. Ada 3 model replikasi DNA yaitu :
1. Model konservatif. Model ini menyatakan bahwa 2 rantai DNA bereplikasi tanpa memisahkan rantai-rantainya.
2. Model semi konservatif. Model ini menyatakan bahwa 2 rantai DNA berpisah kemudian bereplikasi.
3. Model dispersi. Model ini menyatakan bahwa DNA terpecah menjadi potongan - potongan yang kemudian bereplikasi.

       RNA

Berbeda dengan DNA, RNA merupakan rantai panjang lurus yang berfungsi dalam sintesis protein. Terdapat 3 jenis RNA yaitu:

1. mRNA(messenger RNA atau RNA duta/RNAd), bertugas untuk mengkodekan kode genetik dari DNA untuk sintesis protein. Terdapat di anak inti.sel. Triplet kode genetik pada mRNA disebut kodon.
2. tRNA(transfer RNA atau RNAt), bertugas untuk mencocokkan triplet yang ada pada mRNA dengan protein yang sesuai. Terdapat di sitoplasma. Triplet kode genetik pada tRNA disebut antikodon.
3. rRNA(ribosomal RNA atau RNAr), bertugas untuk memasangkan kodon mRNA dengan antikodon tRNA dan menggeser rantai-rantai supaya terbentuk polipeptida(protein). Terdapat di ribosom.

Struktur RNA(ribosenucleic acid) yaitu
1. Gula 5 karbon ribosa.
2. Gugus fosfat.
3. Basa nitrogen yang persis sama dengan basa nitrogen DNA namun pada mRNA thymine diganti dengan urasil.

PRA SINTESIS PROTEIN

Sebelum sintesis protein dilakukan, perlulah diadakan persiapan yang menyeluruh, salah satunya pemasangan asam amino pada salah satu ujung tRNA. 1 asam amino harus diikatkan pasada salah satu ujung tRNA dengan antikodon yang benar, namun protein ini sesuai dengan kodon bukan antikodon. Enzim yang melakukan proses ini adalah enzim tRNA aminoasil sintetase. Enzim ini mengikatkan asam amino pada bagian sisi asam amino kemudian tRNA dengan antikodon spesifik untuk asam aminonya. tRNA dan asam amino berikatan pada enzim sebelum akhirnya dilepaskan.

Sintesis protein adalah proses pembentukan protein dari monomer peptida yang diatur susunannya oleh kode genetik. Sintesis protein dimulai dari anak inti sel, sitoplasma dan ribosom. Sintesis protein terdiri dari 3 tahapan besar yaitu:

1. Transkripsi.
DNA membuka menjadi 2 rantai terpisah. Karena mRNA berantai tunggal, maka salah satu rantai DNA ditranskripsi (dicopy). Rantai yang ditranskripsi dinamakan DNA sense atau template dan kode genetik yang dikode disebut kodogen. Sedangkan yang tidak ditranskripsi disebut DNA antisense/komplementer. RNA Polimerase membuka pilinan rantai DNA dan memasukkan nukleotida-nukleotida untuk berpasangan dengan DNA sense sehingga terbentuklah rantai mRNA.

2. Translasi
mRNA / RNAd yang sudah terbentuk keluar dari anak inti sel menuju rRNA. Disana mRNA masuk ke rRNA / RNAr diikuti oleh tRNA / RNAt. Ketika antikodon pada tRNA cocok dengan kodon mRNA kemudian rantai bergeser ke tengah. Kodon mRNA berikutnya dicocokkan dengan tRNA kemudian asam amino yang pertama berikatan dengan asam amino kedua. tRNA pertama keluar dari rRNA. Proses ini berlangsung hingga kodon stop, ribosom subunit besar dan kecil terpisah, mRNA dan tRNA keluar dari ribosom.

Real Count Capres 2014, manakah tokoh yang anda anggap pantas memimpin indonesia di tahun 2014 mendatang !

CLOCK

GOOGLE TRANSLATE

English French German Spain Italian Dutch

Russian Portuguese Japanese Korean Arabic Chinese Simplified

Postingan Terbaru

MAP

JUMLAH PENGUNJUNG

TMobile Cell Phone

TOTAL PAGE VIEW

free counters
widgeo.net

widget

POPULAR POSTS

Enter your email address:

Follow This Blog

KOMENTAR TERBARU